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A thermodynamic model of the accumulation of diffuse damage in deformed solids is proposed. A 

closed system of dynamic equations of thermo-fractomechanics is constructed. A solution of the non- 

linear equation of the “diffusion” of damage in the form of a plane stationary kink-shaped damage 

wave is obtained. It is shown that the velocity of the wave front is proportional to the invariants of the 

strain (stress) tensor and the “diffusion” coefficient, and inversely proportional to the force of resistance 

to damage accumulation. 

ONE OF the most fruitful ideas when investigating the initiation and growth of microdamage in 
stressed structural components has been the introduction of the idea of scalar, vector and tensor 
measures of damage [l-S]. However, in the overwhelming majority of investigations devoted to 
studying the accumulation of microdamage in structures, the measures of damage are only 
considered as functions of time. The dependence on the spatial coordinates is ignored and the 
initiation and growth of damage is regarded either at a fixed, most stressed point, or uniformly 
over the whole volume of the structural component [l-lo]. Here it is assumed that the process of 
damage accumulation is completed by the formation of a macrocrack due to the merging of 
microdefects or fracture of the specimen by loss of integrity. The occurrence and motion of the 
microfracture fronts usually escape the attention of researchers. In cases when the measures of 
damage depend on the coordinate vector via the nominal stresses, the form of the right-hand 
sides of the kinetic equations is established from empirical considerations, ignoring the spatial 
gradients of the field of the scattered microfractures [7,11,12]. 

The basis of the “point” models of the accumulation of damage is the ordinary differential 
equations dyrldt = f(y, 0,; 5, t), in which w(c”, t) is the scalar measure of damage, while the 
vector E, is simply a parameter [2-121. Continuum models, based on equations of the same type, 
take into account the dependence of the components of the stress tensor CJ, = o,(& t) on the 
vector 5 and the time t [2, 7, 10-121. Here the equations of the accumulation of damage are 
considered together with the conditions of compatibility and the equations of equilibrium of the 
solid. A natural generalization of the evolution equations to distributed systems would be the 
introduction into the model of diffusion transfer processes, i.e. a change to partial differential 
equations of the parabolic type &y/at = f(y, a&)+V(DVv). However, a drawback of this 
approach is the fact that there is no explicit connection with the equation of conservation of 
energy and the equation of entropy balance. To construct continuum models of fracture, which 
take into account the interaction of fields of different physical kinds, it is necessary to use fairly 
general principles based on fundamental variational equations. 

One of the variational principles widely employed at the present time to construct the 
equations of motion of continuous media is the principle of stationary action. It turns out, 
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however, that this principle does not hold for systems with non-holonomic constraints under 
non-potential external loads. In order to circumvent these difficulties, Sedov in 1964 proposed a 
variational principle which generalizes the principle of stationary action to irreversible 
processes and to the cases when there are non-conservative forces present [13,14]. The basis of 
this principle was the generalized equation of the principle of virtual work which is closely 
connected with the equations of the first and second laws of thermodynamics. 

In the present paper Sedov’s variational principle is used to construct a thermodynamic mode 
of the irreversible growth of dispersed damage in deformed solids. A closed system of dynamic 
equations is derived within the framework of the continuum mechanism of the initiation and 
growth of diffuse damage. The general system of equations includes the equation of 
conservation of energy, the equation of balance of momentum, the equation of “diffusion” of 
irreversible damage, and also the defining equations of the thermomechanics of diffuse 
microfracture. To close the system of equations, Onsager’s relations between the generalized 
thermodynamic forces and fluxes are employed. 

1. Consider an inhomogeneous anisotropic non-linearly elastic solid in a field of 
thermomechanical forces. The action of these forces on the body is accompanied by the 
initiation and growth of microdamage, which may lead to defect cluster, the generation of a 
macrocrack, and fracture of the body as a whole. If the dimensions of the microdefects are 
small compared with the characteristic dimensions of the body, and the concentration of the 
defects is fairly high, one can introduce a scalar measure of damage @,“, t) as a function of the 
Lagrange coordinates 5” and the time t to describe the microfracture on a continuum level. 

To determine the thermodynamic state of a defect-free continuous medium using the mass 
internal energy density U it is necessary to specify seven scalar defining parameters: six 
components of the strain tensor E&(Y, t) and the mass entropy density s(s”, t). In a damaged 
medium the parameters E,, and s are insufficient. To describe the irreversible destruction of a 
medium it is necessary for the internal energy density U to depend on the measure of damage 
@“, t) also. In other words, the scalar parameter vmust reflect the change in the physical and 
mechanical properties of the material of the body due to irreversible processes of the initiation 
and growth of microdamage. Hence, the internal energy density of a strained solid in the 
damaged state must be represented in the form U = U(E~*, s, w, V,v). The gradient term V,v 
here takes into account the spatial inhomogeneity of the damage field; Latin subscripts from the 
first half of the alphabet a, b, c, . . . relate to the Lagrange system of coordinates and take on 
values of 1,2,3. 

The defining parameters E.&, t), s@,“, t) and w(k”, t), however, do not form a system of 
independent functions. For example, the components of the strain tensor E&, t) are related to 
the equations of compatibility, while the entropy density s(e”, t), the entropy flux density sa(tb, 
t) and the local rate of change of entropy cr(c, t) satisfy the balance equation 

p$+V,f =a (1.1) 

where p(k”, t) is the natural density of the rest mass of the body, and V, is the covariant 
derivative in a space with metric tensor g,,(r, t). Using the parametric representations for the 
quantities s, so and o 

(1.2) 

the entropy balance equation (1.1) is satisfied identically, while the parameters of the production 
and transfer of entropy q(c”, f), q”(s”, t) are independent. Using the law of motion of a strained 
body in the form xk = x”(v, t), where x’ are the spatial coordinates of an Euler system of 
coordinates, we can change from the dependent relations E,((‘, t) to independent functions 



Thermodynamics of diffuse damage in solids 1037 

xk(t”, r). The fact that the system of defining parameters xk(c, t), q(e”, r), ~“(c”, t) and w(E”, t) 
are independent when deriving the dynamic laws from the variational principle is a conclusive 
fact. 

2. We will construct a model of the diffuse fracture of a solid using the variational equation 
113,141 

&l+6W’+6W=O (2.1) 

Here Z is the action, defined for any possible processes and motions, 6W* is a non-holonomic 
functional, which takes into account irreversible thermodynamic processes and non-conserva- 
tive forces, and 6W is a scalar functional which takes into account the energy exchange at the 
boundary surfaces of the body, and also at the initial and final instants of time of the motion. 
The form of the functional 6W is established from Eq. (2.1) after specifying the functionals Z 
and 6W* which fix the thermodynamic model of the damaged solid. 

We will represent the action Z and the functional 6W* in a form similar to that proposed in 
WI 

(2.2) 

where u,(c’, t) are the components of the velocity vector of points of the body, &“, t) is 
the determinant of the metric tensor, T(c”, r) is the thermodynamic temperature, Q”(eb, t) are 
the components of the vector of the external volume forces, V is a region connected with the 
material particles of the damaged body, and ZZ,&‘, t) and Y(c’, t) are the generalized 
thermodynamic forces corresponding to the irreversible processes of heat conduction and 
microfracture. 

We substitute (2.2) and (2.3) into the variational equation (2.1) and calculate the Lagrange 
variation of the action I. We finally obtain 

&jl - 0*&X, b&dt + 

” + jpua6c,&d3E, 
1 

+6W = 0 
V b 

(2.4) 

Here n, are the components of the vector of the outward normal to the surface S, which 
bound the region V, occupied by the body, and sU/sw=aU/aw-p-‘V,(paU/aV,w) is the 
variational derivative. 

By equating the coefficients of independent variations of the defining parameters in (2.4) to 
zero, we obtain the following system of dynamic equations of the thermomechanics of diffuse 
fracture 
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The first equation in (2.5) is the equation of the balance of momentum. The second equation 
in (2.5) controls the processes of damage accumulation in the stressed body. Equations (2.6) are 
the defining equations of the thermomechanics of the damaged body: the first equation defines 
the absolute temperature, the second equation defines the Piola-Kirchhoff stress tensor, and the 
third is Fourier’s law of heat conduction. 

By specifying the functional 6W on the boundary of the four-dimensional regionV x [to, tl] by 
the equation 

n, + pJ,,Gy - paha dS - 

(2.7) 

we can also obtain from the variational equation (2.4) alternative boundary conditions for 
5” ES 

(T-Ti)naT=O. p(& n, + Jo ) hy/ = 0, (oabnb - pa)&, = 0 
a 

(2.8) 

and the limiting (or initial) condition for t = to and t = t, 

p(u” - u;>sc, = 0 (2.9) 

The dynamic condition T = To in the first equation of (2.8) gives the temperature on the 
boundary of the body, while the kinematic condition n,&n”/dg = 0, using (1.2), gives the entropy 
flux S’ or the heat flux q’ = Ts” through the boundary surface with normal n,. In the case of 
convective heat exchange with the external medium the kinematic boundary condition can be 
represented in the form q%, = k(T -To), where k is the heat-transfer coefficient. 

The kinematic condition 6W = 0 gives the boundary value of the measure of damage w = wo; 
the dynamic condition, defined by the second equation of (2.8), means the continuity of the 
damage flux through the contact surface of the solids. If Jo = 0, the condition J’%, = -(aUl 
N,w)no = 0 means that there is no damage flux through the boundary surface S. 

The dynamic conditions cVbnb = p” and the kinematic conditions 6x,, corresponding to the 
last equation in (2.8), express the usual boundary conditions in stresses and displacements used 
in the mechanics of a strained solid [8]. Conditions (2.9) specify the spatial distributions of the 
coordinates and momenta of the material particles of the body at the initial instant of time. 

3. In a Lagrangian system of coordinates in projections on to the axis of the basis, the general 
system of unknowns contains the components of the vector of the displacements of points of the 
body u’(s’, t), the components of the velocity vector u”(c”, t), connected with the displacements 
U” by the relations 

(3.1) 

the natural density of the body p@,“, t), the mass entropy density s(c”, r), and the scalar measure 
of damage w(c”, f), i.e. nine scalar quantities in all. However, the system of dynamic equations 
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(l.l), (ZS), (2.6) and (3.1) is not closed and must be supplemented by the equation of local mass 
balance 

P&=Pci&F=f(5”) (3.2) 

by the Cauchy-Almansi relations 

E ob = -$v,ll, + vhf&, - v,u,v,ff ) (3.3) 

and also by the equations defining the thermodynamic forces H.(e6, t) and Y(v, t), 
We will use the variational equation (2.1) to construct the equations of conservation of 

internal energy U(&‘, t) and the dissipative function CT@, f). We replace the arbitrary Lagrange 
variation Zip?’ of the defining parameters l.t” in (2.1) by the variation S”$ = (a$ /&)&, which is 
the analogue of the Lie differential in Newtonian space with absolute time. Equation (2.1) can 
then be rewritten in the form 

(3.4) 

Further, using relations (1.2), (2.5) and (2.6) and taking into account the fact that Eq. (3.4) must 
be satisfied for any values of the region V[t,,, rl] and an arbitrary constant 6r, we obtain the 
following energy equation in local form 

~+0’9,u, 
-p at -Vd +v~(P~~)+ 

* +Ta+T-'Haqa+Ydt=O 

Then eliminating cr from Eqs (1.1) and (3.5) we obtain 

- K(P&$)- 

av $+v,s’+ T"&f +T-'Yx =O 

(3.5) 

(3.61 

Equation (3.6) is a logical consequence of the basic variational equation (2.1) and contains, 
in synthesized form, the first and second laws of thermodynamics. The first row of this 
equation, in reduced form, contains the equation of internal energy balance, while the second 
contains the equation of entropy balance. It can be shown that one equation follows from the 
other. Consequently, it will be necessary for what follows to postulate an additional condition: 
either the internal energy balance equation or the entropy balance equation is an identity by 
virtue of Eqs (2.5) and (2.6). It is natural to take as being identically satisfied the internal energy 
balance equation 
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av - dbvb,,, + vaqa - v 
p at 

We then obtain the entropy balance equation from (3.6) 

hf p$+V,s” =o, as-T-2qaVaT-T-“f’~~0 

(3.7) 

(3.8) 

in which the dissipative function a(c”, t) defines the value of the irreversible increase in entropy 
due to heat conduction and microfracture. 

When there are relations between the thermodynamic forces Ha = V,T, Y and the fluxes @ 
and */at, the quantity 6, by Onsager’s theory, can be regarded as a quadratic form in the 
thermodynamic fluxes or forces. Then, in accordance with the local formulation of non- 
equilibrium thermodynamics, we can represent the relation between the thermodynamic fluxes 
and the forces in the following simplified form 

4’ = -kabvbT, y = -raw/at (3.9) 

The phenomenological coefficients h* and I are, generally speaking, non-linear tensor 
functions of the defining parameters and their derivatives. The components of h* here form a 
thermal-conductivity tensor in the undamaged solid, while the first equation of (3.9) expresses 
Fourier’s heat-conduction law. We will call the parameter r the resistance coefficient of the 
accumulation of damage; it has the dimensions of the volume density of action [J s/m’]. The 
generalized thermodynamic force Y is equal to the work which must be expended to move the 
microfracture front in the deformed solid. Relations (3.9) close the general system of equations 
of thermodynamics of microfracture in the nine unknown quantities I/, u’, p, S, w. 

4. The specific model of the damaged solid can be fiied to an equal degree using the internal 
energy U(E,, S, w, Vow), the free Helmholtz energy F(e&, T, yr, V.w), or the Gibbs thermo- 
dynamic potential @(&, T, ye, V.w). If, for example, we need to solve the dynamic coupled 
thermofractomechanics problem, then, in the position of thermodynamic equilibrium, the 
Helmholtz free energy is a minimum. If the body is situated in a quasi-static thermal force field, 
thermodynamic equilibrium begins when the Gibbs thermodynamic potential reaches a 
minimum. The relation between these potentials is established by Legendre transformations 

F=U-Ts, @=F-tJ*Eab (4.1) 

and the defining equations of thermomechamcs can be written as follows: 

<T* = p(au / a&&& = p(aF / a&&)),,,) cab = -(a@ / abab)T,y 

T = (au / as)e,y, s = -(am aT),,, = -(a@ 1 aT),,, (4.2) 

To fix our ideas we will consider the Helmholtz free energy. We will represent the mass 
density F in the form of the sum F = F, + F,, where Fn(eab, 7’) is the free energy density of the 
solid without damage, and F,(E~, T, y, V,w) is the difference between the free energies of the 
body in the damaged and undamaged states. From (2.5) and (3.9) we have ’ pSF/Syt = 
-Ehylat a 0. Hence we see that microfractures lead to a reduction in the free energy of the 
body, i.e. F. s 0. Assuming that e, and F. are holomorphic functions of the scalar arguments 
(T, yr) and tensor arguments (E,~, V.w) we can expand them in Taylor series in the neigh- 
bourhood of the initial state 

p,,F,(&~,T) = PO&, -posoe+o?e, - 
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(4.3) 

poF, = -A&,T)(m+ 1)-‘\ym+’ + B(m+n+l)-l~m+“+l + DabV,,@,\y+.- (4.4) 

Here p,, is the density at the initial instant of time, F,, s, and (3: are unimportant constants, 
’ e& = a,, - e,, 8 = T-T,, EL and To are the strain tensor and the absolute temperature of the 

body in the initial state, co is the heat capacity of the continuous medium for constant strain 
Eohd and a, are the elastic-constant tensor and the tensor of the coefficients of linear thermal 
expansion, and D& are the components of the tensor of the damage “diffusion” coefficients. 

We will discuss the strain dependence of the coefficients in (4.4) in more detail. If the process 
of initiation and growth of the damage is connected with the local microstress tensor, the 
fracture surface can be made to correspond to this tensor in six-dimensional strain space. In the 
case of an active load the limiting surface in strain space will be shifted and deformed, following 
the anisotropic strengthening processes. Hence, the relations between the stresses and the strains 
should differ considerably from linear-elastic. In this connection, the term proportional to 
A(&,, T) in (4.4) should contain, as a minimum, linear invariants of the strain tensor, while the 
coefficients B and D* can be assumed to be constants of the material, to a first approximation. 

We will show that this is so. Consider a body with a uniform distribution of defects in a field of constant 
thermo-elastic stresses. The function F. should then not depend on the spatial coordinates y, and the 
expansion of the free energy can be represented in the form 

(4.5) 

Differentiating this expression with respect to v we obtain the values of the measure of damage for which 

the free energy of the body has an extremum 

v. = 0, v, = (A I B)“” E [OJ) (4.6) 

Since the process of the accumulation of damage is irreversible, the rate of growth of the damage density 

is a non-negative quantity. The value v = 0 corresponds to an undamaged material, and when v = 1 either 
a macrocrack is formed or the material is fractured by a loss of integrity. Consequently, for any n the 
coefficients A and B will have the same signs. At the point v=v,, the free energy has a maximum 
F(vo) = F,; when v = v. the free energy reaches a minimum 

poF(~*)=poF, -nA[(m+l)(m+n+l)J-l(A/B)(m+‘)‘” (4.7) 

Hence we see that in the damaged state of the material the coefficients A and B must be positive, and the 

coefficient A when E,, = EL, T = To must be equated to zero, while the coefficient B can be assumed 

constant. 

Taking the above observations into account we can write the function p,F. in the form 

p& = -lA*(e* - a,&)) + % ADbcd (cab - o&e)(eCd - a&l x 

x(m+ l)-$P+* + B(m + n + l)~~+~+’ + DabV, yrV,v+. . . (4-g) 

where A*, Aakd are the components of the fracture-surface tensors in strain space [16]. 
Substituting the mass free-energy density into the first equation of (4.2) we obtain the following 
expression for the components of the stress tensor 

-(m + I)-’ W”+‘Akd](ecd - a,@) - (m + l)-’ vrn+lAd} (4.9) 

By virtue of the principle of the existence of the fundamental state when E,, =&lib, T = To, the 
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components of the tensor of are zero. The density p for small strains can be replaced by the 
quantity pO. 

We will represent the components of the tensor Aab as follows: 

A cab = (m + l)[ Eo”b”d -(,+l)-‘~m+‘Aakd]C, 

and we will introduce the following notation 

(4.10) 

We can then rewrite (4.9) in the form 

@= t&d 1 4’ - (m + I)-’ vm+‘Aabcd]( &,d - &;d - (x,8 - &:d) (4.11) 

In the equilibrium state we have y=[A(.cob, T)IB]““. Hence, the defining equations (4.11) 
reflect not only the thermo-elastic properties of the material but also the inelastic properties due 
to the initiation and growth of microfractures. The tensor with components (4.10) can serve as a 
measure of inelastic strains due to the formation of volume pores. 

We will define the free-energy density in an isotropic solid by the expression 

p,F=p,F~-9K~a~e-~poco~*T~‘+~KOe2+ 

+)/2G,,e? -[9Ko~(e-a13)+~GoA’e~](m+1)-‘yrm+1 + 

+B(m + n + l)_’ yfm+n+’ + D(Vyq2 (4.12) 

Using formulae of the type (4.2) we obtain 

(4.13) 

Here K, and G,, are the isothermal volume modulus and the shear modulus in an 
undamaged solid, e = xgobeob is the mean volume strain, e:, = e, -eg, is the strain tensor 
deviator, e, = (j$eLe’b’)1’2 is the intensity of the shear strain, o = xgg,b~ab is the mean hydrostatic 
stress, o:, = o, -og, is the stress-tensor deviator, and oi = (XO~O”‘)“~ is the shear stress 
intensity. The term A&z+ l)-$rm+l in the first of the equations in (4.13) defines the measure of 
inelastic volume strain for a uniform tension due to the formation of micropores. The strain E is 
then made up of the elastic component E, = ol(3K,), the initial component E, = Xg,b&:b, the 

temperature component E, = a0 and the inelastic component E. = &(m+ l)-lvm+l. The term 
A(m+ ,)-%lP+i in the second of the equations in (4.13) takes into account the effect of damage 
on the value of the tangential shear modulus G = G,[l- A(m+ l)-l,m+l]. 

The mass entropy density s in the case of an anisotropic damaged solid in a non-equilibrium 
state is given by relations (4.2), (4.3) and (4.8) as follows: 

s = -(aF I aT),,, = Sg + C&T“ + EoobCdeabacdp,’ - 

-[ Adad + ADbcd (e&-a&e)a,d](m+l)-‘y”+‘pi’ 2 so (4.14) 

The specific heat capacity for constant strain in a non-equilibrium microfracture process in 
the approximation I e/T, 14 1 can be calculated from the equation 

c = T@s / aT),,, = co + Ahda,ba,(rn + l)-‘vm+‘ToP~’ 2 co (4.15) 
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In the initial state, when E, = &,, T = To, we have w = 0 and, consequently c= c,. When 
thermodynamic equilibrium is reached in a uniform solid h/at= 0, V,v =0, Y = 0 and 
w = w.. The measure of damage then loses its independence of a number of defining parameters 
and becomes a function of the strain and the temperature: w = v*(eob, 7’). The equilibrium value 
of the heat capacity in this case is determined by the total derivative 

C* = T(& / aT),,, = T(& 1 iIT),,, + T(as 1 &&&I~ 1 aTje,yl = 

= co + Top&,“+’ ( (m + I)-’ AobcdCC,CX, + (nB)-‘[A%& + 

+Ahd@& - E$, - ~,8)a,]*~;“) 3 C 

In a similar way we can calculate the other equilibrium thermodynamic coefficients 

(4.16) 

where g&, are the components of the isothermal compliance tensor of the solid in the 
equilibrium state. 

5. To construct the microfracture “diffusion” equation we will assume that the coefficient of 
resistance to the accumulation of damage in the second of the equations in (3.9) is a non-linear 
function of the measure of damage: r = r,(l - C#), where r,, C and 1 are phenomenological 
constants. When C > 0, E> 0 the parameter T(v) takes into account the effect of the density of 
accumulated microfractures on the rate of damage of the remaining structural components of 
the solid [6-g]. Substituting the free energy density F(E.*, T, ye, V.w) and the generalized 
thermodynamic force of resistance to damage Y = -r&y/& into the second equation of (2.5) we 
obtain a non-linear parabolic equation of the propagation of microfractures in the strained 
solid 

r. (1 - c$)a\y t at = A (Ed, T)vm - mjf’+” + v, ( Dabvbv) (5.1) 

If the components of the “diffusion” tensor LYb are equal to zero, Eq. (5.1) describes the 
accumulation of damage uniformly within the volume of the solid. With the additional 
condition B = 0 we have a self-similar model process of accumulation of damage taking into 
account the redistribution of the strains in the undamaged structural components. If, in 
addition, we also have C =0, we obtain a model in which the strains in the structural 
components are independent of the level of accumulated damage. The additional proposition 
that m = 0 leads to a linear rule for the summation of the damages [l-12]. 

In general, the accumulation of damage simultaneously at all points of the strained body is 
somewhat improbable. The following mechanism of the accumulation of damage is more 
realistic: the occurrence of microfractures at the most stressed points, an increase in the damage 
density up to the thermodynamically equilibrium value, the relay-propagation of the damage in 
the medium, the fusion of spatial regions of microfactures, and the formation of a continuous 
damage zone over the whole volume of the strained solid. Obviously, the rate of propagation of 
the damage front, like the equilibrium value of the measure of damage, must be proportional to 
the invariants of the strain or stress tensor. 

We will show that Eq. (5.1) has a solution in the form of a stationary kink-shaped solitary 
wave. Suppose the parameters A(&&, Z’), B, C, D* = Dgob and r, are constants of the material. 
Then the stationary solution of Eq. (5.1) with boundary conditions \y = vl when 5 -_) --oo and 
w = 0 when 5 + +oo will be sought in the form of a plane wave ~(5, t) = ~(5 -Vt) = v(x), where 
V is the velocity of propagation of the damage front. Substituting the required solution into (5.1) 
we obtain the ordinary differential equation 

(5.2) 
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By introducing the 
represent its solution 
result we have 

new variable cp=dyldx we can reduce the order of this equation and 
in the form cp = tpov(A - ByP), where (pO is an unknown constant. As a 

IT,-, + DcpoA - Vl-oCSq’ + ‘P&“-’ - m,,B(n + 1)~” = 0 (5.3) 

Equation (5.3) will be satisfied for any values of w E [0, w.], if we require that the conditions 
l=m-l=n>O and 

vr, = -DcpoA, mDq;B+ WoC<po = 1 

are satisfied. Hence we obtain the parameters of the problem V and ‘pO 

(5.4) 

qo=--& CO, N=(n+l)B-AC>0 (5.5) 

Obviously, as the thermomechanical strains increase the coefficient A(E,, T) and, 
consequently, the velocity of the damage front V, will also increase. Naturally, the velocity of the 
damage front is also proportional to the “diffusion” coefficient (V - 4 0) and inversely 
proportional to the force of resistance to the accumulation of damage (V - l/I,). 

The relation cp = @ ldx = (p,y(A - By”) is an equation with separable variables and can easily 
be integrated 

(5.6) 

After reduction we obtain the solution of the non-linear equation (5.1) in the form of a plane 
stationary kink-shaped solitary wave 

(5.7) 

Since (pO c 0, this solution satisfies the given boundary conditions as c + f~. The damage 
wave moves in the positive direction of the 5 axis, changing the state of the medium w = 0 to the 
state w = w.. The propagation of the solitary wave is ensured by the dynamic equilibrium 
between the non-linear process of the accumulation of damage and the “diffusion” of damage 
in the strained body. The free energy is stored at each point of the volume of the medium and the 
travelling damage wave serves as a signal for it to be released. The value of the released energy 
here is exactly equal to the energy required to maintain the motion of the wave. 

It can be seen from (5.5) and (5.7) that the velocity and slope of the wavefront increase for 
large nominal values of the strains. In the limit A(E&, T) + B, ye, + 1 the formation of a shock 
wave propagating with velocity 

V.=[DB/(n+1-C)]Y211’o<Vo (5.8) 

occurs, where V, is the minimum velocity of the shear wave in the solid. Hence it follows that the 
phenomenological constant C must be bounded by the inequalities 

0aC<n+1-DB(VoI’o~-2 (5.9) 

Note also that when the above-mentioned limitations on the coefficients of Eq. (5.1) are 
satisfied, the solution (5.7) is unique and stable in the class of monotone functions [l7]. 

Hence, a thermodynamic analysis of the accumulation of diffuse damage in solids enables us 
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to draw the following conclusions. The initiation and growth of microdamage under any 
loading conditions reduce the free energy of the strained solid. The kinetic equations of the 
damage accumulation, obtained using the variational principle, can only contain integral 
powers of the measure of damage, the absolute temperature, and the invariants of the strain 
(stress) tensor. By taking into account the dependence of the free energy on the measure of 
diffuse damage, one can determine the value of the inelastic strain due to the formation of 
micropores and microcracks, and estimate the effect of the damage on the change in the shear 
moduli, the entropy and the heat capacity. We have shown that the propagation of damage in 
strained solids can take the form of a wave, and the velocity of motion of the damage front 
depends on the nominal strains, the viscosity of the microfractures, and the “diffusion” 
coefficient of the damage. 
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